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Dipole Ring Parameters

Parameter Value

Reference Momentum 250 MeV/c

Number of Half-Cells 4

Bend Angle per Half-Cell 90°

Ring Circumference 3.8 m

Number of RF cavities 4

RF Gradient 40 MV/m

Absorber Pressurized H2

Hardedge Dipole Field 2.6 T

Straight Length per Half-Cell 40 cm

Dipole Radius of Curvature 31.8 cm
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Cell Geometry Description

rho=31.8

gamma=22.5

Xc=22.5 cm

Yc=22.5 cm

20 cm

Based on a Sketch 
from A. Garren
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Using TOSCA

Hard edge field calculations for the Garren-Kirk Weak Focusing Dipole 
Ring have shown promising results.

It is essential to examine the ring using realistic fields that at least 
obey Maxwell’s equations.

Tosca can supply fields from a coil and iron configuration.
We can use the program to supply a field map that can be used by
ICOOL and GEANT.

Tosca itself can also track particles through the magnetic field that it 
generates.

This allows us to avoid the descretization error that comes from field 
maps. 
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Tosca Model

For the ease of calculation we are modeling the dipole 
magnets by its coils only.  This may not be the way we 
would actually engineer the magnet if we actually built it.

This permits the field to be calculated with Biot-Savart 
integration directly.  No finite-element mesh is necessary 
if iron is not used.

There are limitations in the Tosca tracking.  
Tosca permits only 5000 steps.  This limits the step size 
to ~0.5 mm.  This may limit the ultimate precision.
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Finding the Closed Orbit

We know that the closed orbit path 
must be in the xz plane and that it must 
have x’=0 at the x-axis  from 
symmetry.

We can launch test particles with 
different Xstart.
The figures on the right show Xstart
vs. ∆x90 and Xstart vs ∆x'90.

Where ∆x90 and ∆x'90 are the 
variable differences after 90°
advance.
We find that the best starting 
values are 

Xstart=55.03362 cm for ∆x90
Xstart=55.05569 cm for ∆x'90

Xstart vs X90-X0

y = 0.00955x2 - 0.76870x + 55.03362
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Closed Orbit

Closed orbit trajectory 
for 250 MeV/c µ started 
at x=55.02994 cm.
Note that there is 
curvature in region 
between magnets since 
there is still a significant 
field.
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Field Along the Reference Path

Figure shows By along 
the 250 MeV/c reference 
path.

The blue curve 
indicates the field 
from the Tosca field 
map.
The red curve is the 
hard edge field.

Note the –0.5 T field in 
the gap mid-way between 
the magnets.
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Calculating Transfer Matrices

By launching particles on trajectories at small variations 
from the closed orbit in each of the transverse directions and 
observing the phase variables after a period we can obtain 
the associated transfer matrix.

Particles were launched with
δx = ± 1 mm
δx' = ± 10 mr
δy = ± 1 mm
δy' = ± 10 mr
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90° Transfer Matrix

This is the transfer matrix for transversing a quarter turn:

This should be compared to the 2×2 matrix to obtain the twiss
variables:
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Twiss Variables Half Way Between 
Magnets

Parameter Tosca A. Garren Synch

µx 98.38° 99.8784°

βx 32.3099 cm 37.854 cm

αx -0.00124 0

µy 100.62° 92.628°

βy 53.9188 cm 56.891 cm

αy 0.0009894 0
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Using the Field Map

We can produce a 3D field map from TOSCA.
We could build a GEANT model around this field map 
however this has not yet been done.
We have decided that we can provide a field to be used 
by ICOOL.

ICOOL works in a beam coordinate system.  
We know the trajectory of the reference path in the global 
coordinate system.

We can calculate the field and its derivatives along this path.
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Representation of the Field in a Curving 
Coordinate System

Chun-xi Wang has a magnetic field 
expansion formulism to represent the 
field in curved (Frenet-Serret) coordinate 
system.

This formulism is available in 
ICOOL.
Up-down symmetry kills off the an
terms;  bs is zero since there is no 
solenoid component in the dipole 
magnets.
The bn(s) are obtained by fitting

to the field in the midplane
orthogonal to the trajectory at s

The field is obtained from a 
splining the field grid.

n
ny xsbsxB )(),( ∑=
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bn along the path
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Fourier Expansion of bn(s)

The bn(s) can be expanded with a Fourier series:

These Fourier coefficients can be fed to ICOOL to describe the field 
with the BSOL 4 option.
We use the bn for n=0 to 5.
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The bn Series Reconstructed from the ck, n
Harmonics as a Verification
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Storage Ring Mode

Modify Harold Kirk’s ICOOL deck to accept the Fourier description of 
the field.

Scale the field to 250 MeV/c on the reference orbit.
This is a few percent correction.

Verify the configuration in storage ring mode.
RF gradient set to zero.
Material density set to zero.

Use a sample of tracks with:
δx=±1 mm; δy=±1 mm; δz=±1 mm;
δpx=±10 MeV/c; δpy=±10 MeV/c; δpz= ±10 MeV/c;
Also the reference track.
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Dynamic Aperture

In order to obtain the dynamic aperture I launched particles at a symmetry point 
with different start x (y).
The particle position in x vs px (y vs. py) was observed as the particle trajectory 
crossed the symmetry planes.
I have examined 4 cases:

Harold Kirk’s original Hardedge configuration.
My Hardedge configuration which tries to duplicate Al Garren’s lattice
My Realistic configuration which tries to duplicate Al Garren’s lattice.
The Realistic configuration ignoring higher order field components.
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Model Parameters

Parameter Kirk Kahn 

Momentum 0.25 GeV/c 0.25 GeV/c

By 2.183 T 2.622 T

Ref. Radius 38.2 cm 31.8 cm

Dipole Length 60 cm 50 cm

Drift Length 27 cm 24.85 cm

Circumference 4.56 m 3.986 m

Edge Matrix Element 1.0844 1.30129

Angle 22.5º 22.48º

Date July 2003 Nov 2002
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Horizontal Dynamic Aperture (x vs. px)

Kirk’s Hardedge model My Hardedge model

Realistic Field Model Realistic Model with 
no sex
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Vertical Dynamic Aperture (y vs. py)

Kirk’s Hardedge Model My Hardedge Model

Realistic Field Model
Realistic field w/ 
no sex
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Measure Dynamic Aperture:
Counting Rings

 Kirk Hardedge Kahn Hardedge Kahn Real No Higher 
Order 

x Px 13 9 5 8 
y Py 14 14 4 7 
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Storage Ring Parameters

The table below shows the Twiss Parameters as seen in ICOOL for both the 
realistic and hardedge models.  These were calculated in a manner similar to 
those shown before
Both ICOOL models look reasonably comparable to the original SYNCH and 
TOSCA models.

This is extremely encouraging and says that the realistic fields do not 
significantly alter the lattice!

Parameter A. Garren 
Synch 

Tosca Icool Realistic Icool Hardedge Icool with 
No Sex 

µx 99.8784° 98.38° 105.496° 103.626° 106.313 
βx 37.854 cm 32.3099 cm 34.293 cm 38.8635 cm 33.6023 cm 
αx 0 -0.00124 -0.000461 -0.000576 -0.00593 
µy 92.628° 100.62° 100.619° 94.9662° 100.865 
βy 56.891 cm 53.9188 cm 54.086 cm 56.9616 cm 53.844 cm 
αy 0 0.0009894 0.000652 -0.000001 0.00597 
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Conclusion

We have shown that for the dipole cooling ring that hard 
edge representation of the field can be replaced by a coil 
description that satisfies Maxwell’s equations.

This realistic description maintains the characteristics of 
the ring.
This realistic description also maintains a substantial 
fraction of the dynamic aperture.
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